2020-7-27 9:05:19 瀏覽:1514次
如此寬的頻帶,混合不同的頻率,表現(xiàn)形式不一,這給我們了解房間的聲學(xué)特性帶來困擾,使計算變得很復(fù)雜。由此我們應(yīng)當(dāng)將全頻域分段,單獨進行計算,以便了解房間聲學(xué)特性。
當(dāng)我們面對一個小型房間時,我們可以很容易的將房間頻響分為四個部分:
第一部分:自由區(qū)(X區(qū))
第二部分:典型區(qū)(A區(qū))
第三部分:混合區(qū)(B區(qū))
第四部分:線性區(qū)(C區(qū))
在一個小房間四個分區(qū)中:自由區(qū)沒有任何模態(tài)耦合效應(yīng),而典型區(qū)更適用于利用點聲源聲傳播方式進行計算,線性區(qū)更適用于線性聲源傳播方式進行計算。混合區(qū)需要用復(fù)合方式進行計算。
舉例:
在一個長6.7米,寬5.5米,高4.3米的空間中。我們可以根據(jù)長度得出空間的最低頻率分界點(X區(qū)與A區(qū)的分界點)。分界點的計算公式為:聲速(一般空氣中傳播速度為344米/秒)除以房間最長邊兩倍的距離。
即:f=344/2L
▲▲▲
在這個例子中分界點頻率約為26Hz。而A區(qū)和B區(qū)的分界點頻率計算公式為f=34000√(T/V),其中T代表房間的混響時間,而V代表房間容積。
假設(shè)該房間混響時間為0.5秒,通過計算我們可以得出A區(qū)與B區(qū)的分界點約為107Hz。一般來說B區(qū)與C區(qū)的分界線頻率約為4f,在這個例子當(dāng)中我們可以得出大約為428Hz。
這樣我們就將這個小房間分為了4個部分:X區(qū)0-26Hz,A區(qū)26-107Hz,B區(qū)107-428Hz,C區(qū)408-20000Hz。
正如上文所說我們需要對不同區(qū)域運用不同的計算方式進行計算。除了X區(qū)以外,因為該區(qū)域的劃定完全取決于房間最長邊的長度和聲速。
對于A區(qū),B區(qū),C區(qū)的分界線(f以及4f)我們需要強調(diào),該分界點只是通過一個數(shù)學(xué)模型區(qū)進行分區(qū),方便我們之后的計算,而非在這個分界線兩端,聲音的表現(xiàn)將完全不同。他們之間的改變是連續(xù)過渡的。
模態(tài)共振的次數(shù)會隨著由A區(qū)到C區(qū)的過渡而增加,但在X區(qū)卻基本沒有。這并不意味著在X區(qū)(344/2L及以下頻率)內(nèi)的頻率不存在于房間內(nèi),而是向我們指出,在這個區(qū)域的頻率并不會對房間頻率響應(yīng)造成很大影響。
房間尺寸對于聲學(xué)質(zhì)量的影響可以通過下圖進行概覽。在解釋這個圖示之前,我們要先明確一點,即所采用的房間混響時間大約為0.5秒上下;祉憰r間在這里的作用僅限于對 “阻尼”以及房間吸聲系數(shù)的一個說明,而長邊344/2L這個值是必須知道的。
▲▲▲
通過圖中所示可看出,低頻下限與長邊長度相關(guān)。在體積越小的房間中,低頻下限越高,同時低頻響應(yīng)越差。在一個非常小的,僅限于語言擴聲的場所中,這個問題可能并不會有很嚴(yán)重的后果,因為一般來說只有10%左右的語言信息會在200Hz以下的地方,當(dāng)然,這只是其中一部分的問題。
A區(qū)(典型區(qū))
隨著房間體積的增大而減小,這意味著,越小的房間中,越多的可聽到的頻率將會遵循點聲源擴散的特性進行傳播,也有更多的模態(tài)共振產(chǎn)生。這同時意味著,將有更多的穩(wěn)態(tài)響應(yīng)區(qū)間,會造成更嚴(yán)重的聲染色以及更多頻段上的不規(guī)則性房間響應(yīng)。
B區(qū)(混合特性區(qū))
也會隨著空間的減小而增加。當(dāng)然在B區(qū)占主導(dǎo)的衍射及擴散特性相較于A區(qū)的模態(tài)共振還有很大的不同,這些也會成為擴聲問題。
C區(qū)(線性區(qū))
表現(xiàn)為高度的線性擴散特性,隨著A區(qū)及B區(qū)的增加而減小,當(dāng)房間聲學(xué)問題在C區(qū)當(dāng)中產(chǎn)生時,我們使用簡單的聲學(xué)設(shè)計就可以解決相應(yīng)的問題。
總的來說,在系統(tǒng)設(shè)計及調(diào)試時應(yīng)著重對A區(qū)及B區(qū)所會產(chǎn)生的問題進行預(yù)判。因為這兩個區(qū)域的聲學(xué)問題可能會比較難解決。而X區(qū)是由于物理特性所無法控制的,且是不含有主要的信息的頻段,C區(qū)的聲傳播物理特性將幫助我們相對容易的解決在該頻段內(nèi)的所產(chǎn)生的聲學(xué)問題。